EEP Project Closeout Summary

Project ID \& Status

Project Name/Number: Sandy Creek

EEP ID
 County:

Project Type:
Current Status:

Project Setting

Basin: Cape Fear
Piedmont Central Piedmont 03030003
Ecoregion:
USGS Hydro Unit:

Project Performers
DOT Project Transfer in 2005

Project Timeline
Milestone
Date

Monitoring Year-5

Project Restoration Components and Mitigation Assets

Wetland		Asset Data				
	Restoration Component		Ratio			Wetland
		Level	Multip	Acres	WMU	Type
	Bottomland Hardwood	R	1.00	10.00	10.00	RIP
	Bottomland Hardwoods	P	0.20	2.90	0.58	RIP

Asset Summary

Level	Multip	Acres	WMU
R	1.00	10.00	10.00
		0.0	0.0
		0.0	0.0
P	0.20	2.90	0.58
		$\mathbf{1 2 . 9 0}$	$\mathbf{1 0 . 5 8}$

Standard Ratios

	Level	Ratio	Multiplier
Wetland	R	1	1.000
Wetland	E	2	0.500
Wetland	C	3	0.333
Wetland	P	5	0.200

The Sandy Creek Mitigation Site in the Cape Fear River Basin was constructed by DOT in 2000 and is 12.9 acres in size: 10 acres are restored riverine bottomland hardwood wetland and 2.9 acres are preserved riverine bottomland hardwood.

This entire tract is within the floodplain of Sandy Creek and was formerly used for hay production. Restoration of the site included filling ditches and leveling the bedding done to drain local areas.

P1 = Priority I Restoration	$\mathrm{R}=$	Restoration
P2 = Priority II Restoration	$\mathrm{E}=$	Wetland Enhancement
P3 = Priority III Restoration	$\mathrm{EI}=$	Stream Enhancement I
	$\mathrm{EII}=$	Stream Ennancemnt II
	$\mathrm{C}=$	Wetland Creation
SMU =Stream Mitigation Units		
WMU = Wetland Mitigation Units		

Table 2
2002 HYDROLOGIC MONITORING RESULTS

Monitoring Gauge	$<5 \%$	$\mathbf{5 - 8 \%}$	$\mathbf{8 - 1 2 . 5 \%}$	$>\mathbf{1 2 . 5 \%}$	Actual \%	Dates Meeting Success
SC-G1				\checkmark	30.3	March 23-April 22 Aug 31-Nov 7
SC-G2				\checkmark	34.7	March 23-June 9 June 28-Augus 9 Aug 26-Nov 7
SC-G3				\checkmark	31.6	March 23-April 29 Aug 28-Nov 7
SC-G4				\checkmark	23.4	Sept 15-Nov 7
SC-G5				\checkmark	32.5	March 23-May 17 June 28-August 20 Aug 26-Nov 7
SC-G6				\checkmark	18.9	May 2-June 10 June 28-August 9

Specific Gauge Problems

- SC-G4: The gauges battery was replaced and lost data from (February 27-April 9), which may have affected the gauge from meeting the success criteria.

All six gauges met jurisdictional hydrologic success of at least 12.5% during the growing season.
Table 2. 2003 HYDROLOGIC MONITORING RESULTS

Monitoring Gauge	$<\mathbf{5 \%}$	$\mathbf{5 - 8 \%}$	$\mathbf{8 - 1 2 . 5 \%}$	$\mathbf{> 1 2 . 5 \%}$	Actual \%	Dates Meeting Success
SC-G1				\mathbf{x}	36.8	March 24-June 15
SC-G2				\mathbf{x}	100	March 24-Nov6
SC-G3				\mathbf{x}	35.1	March 24-June 11
SC-G4				\mathbf{x}	100	March 24-Nov6
SC-G5				\mathbf{x}	39.9	Augut 8-Nov6
SC-G6						

The 2003 year experienced an above average rainfall year

Specific Gauge Problems

- Gauges (G1) and (G3) could not be downloaded after June due to inundation at the gauge locations

During the 2003-monitoring year, standing water was reported at the majority of the gauge locations. This increased the difficulty involved in downloading the gauges.

Table 1. 2004 HYDROLOGIC MONITORING RESULTS

Monitoring Gauge	< 5%	5-8\%	8 -12.5\%	> 12.5\%	Actual \%	$\begin{aligned} & \text { Dates Meeting } \\ & \text { Success } \end{aligned}$
SC-G1+				\times	18.0	Sept 28-Nov 7
SC-G2+				\times	30.7	March 23-April 27 Aug 30-Nov 7
SC-G3+				\times	30.7	March 23-April 25 Aug 30-Nov 7
SC-64		\times			6.6	March 23-April 6
SC-G5+				\times	37.3	Aug 15-Nov 7
SC-G6+				X	14.9	Aug 30-Oct 10

+Gauge met during an average rainfall month (February, April, June, July, August, October, and November)

Specific Gauge Problems:

- Gauge 4 malfunctioned during the period from July 17 - October 10

Table XIV. Wetland Criteria Attainment (March 24 -November 13, 2005) Sandy Creek Wetland Mitigation Site/ Project No. 321						
Tract	Monitoring Gauge ID	$\begin{gathered} \text { Hydrology } \\ \text { Threshold } \\ \text { Met? } \\ \hline \end{gathered}$	Tract Mean	Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
	SC-G1	N	83\%	01	Y	100\%
	SC-G2	Y		02	Y	
	SC-G3	Y		03	Y	
	SC-G4	Y				
	SC-G5	Y				
	SC-G6	Y				

Stem Counts Per Acre By Plot					
MY	CY	Ave	Plots		
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Y1	2001	$\mathbf{3 6 1}$	372	189	521
Y2	2002	$\mathbf{5 7 0}$	595	495	621
Y3	2003	$\mathbf{5 2 2}$	571	457	539
Y4	2004	$\mathbf{2 8 4}$	291	210	352
Y5	2005	$\mathbf{6 9 9 3}$	2631	3293	15054
Y6	2006	$\mathbf{3 1 4}$	261	192	488

Table V. Hydrologic Monitoring Results for 2006 (Year 5)						
Gauge	<5 percent	5-8 percent	8-12 percent	>12.5 percent	Cumulative percent	Dates Meeting Success
SC-1	X				5.7	
SC-2				X^{*}		*
SC-3				X	81.1	$\begin{gathered} \hline \text { Mar 23- } \\ \text { 12-Jul } \end{gathered}$
SC-4				X	68.8	$\begin{gathered} \text { Aug 30- } \\ \text { 4-Oct } \end{gathered}$
SC-5				X	60	$\begin{aligned} & \text { Mar 23- } \\ & \text { 29-May } \end{aligned}$
SC-6				X	46.9	$\begin{aligned} & \text { Mar 23- } \\ & \text { 20-May } \end{aligned}$
Notes: Percentage indicates percent of the growing season water table is less 12 inches below ground surface. *Gauge SC-2 malfunctioned during the period. Success is based on monthly observations of inundation and saturation						

MEMORANDUM

Date: July 17,2006
To: Greg Melia, Stream Monitoring Specialist, EEP
From: Ron Jolmson
Reference: Vegetation Monitoring for EEPP Project \# 321, Sandy Creek Wetland Mitigation Site.
This memo is to follow up on our conversation regarding the vegetation monitoring and the stem counts
of the Sandy Creek Wetand Mitigation Site in Randolph County, North Carolina. On June 1,2006 we met onsite to reach an agreement as to how to count stems given the large number of green as recruitment that is occurring on the site.
It was agreed that Earth Tech would attempt to identify and count as many planted stems as possible. A planted stem wound be a stem that appeared to have flagigng from a previous yearp or if flagging could be
found at
would be base of the stem and the stem (sapling tree) appeared to be the approprite size and age it The results of the revised count are presented in the attached table. Based upon the above methodolog
 present.
Additional tree species occurring in the plots (as volunters) included American sycamore, sweet gum and box elder. OUtuside the plots, black willow was observed in several locations. Dense stands of greein

Across the site, survival of planted trees is mixed, with lower survival in areas that appear to have standing water during the wetter time periods. With natural recruitment occuring, over time , the site wil
be similare to adjacent bottonland areas that aliso have a high density of yreen ash. A dense stand of be similar to adjacent bottomland areas that also have a high density of green ash. A dense stand of
herbaceous cover is present and few if any bare spots were observed. The majoity of the herbaceou vegetaion observed are welland specie
Beaver are currently active in adjacent Sandy Creek and over the 5 -year monitoring period beaver activity

Although the required six species of planted trees is not present across the site, Earth Tech does no recommend that any additional plantings be perfommed. Additional plantings would likely b musuccessfulu given the established herbaceous vegetation, developpng stands of green ash, and hisel
beaver activity. Given time there will be plenty of diversity and natural recruitment adjacent bottomland forest areas as well as seeds brought in by periodic flooding from Sandy Creek.

If you have
854.6210.

